
Licensing
VOLUME 41 NUMBER 10

Edited by Gregory J. Battersby and Charles W. Grimes

THE

Journal

NOVEMBER/DECEMBER 2021

DEVOTED TO
LEADERS IN THE
INTELLECTUAL
PROPERTY AND
ENTERTAINMENT
COMMUNITY

®

NOVEMBER/DECEMBER 2021	 T h e L i c e n s i n g J o u r n a l 	 1

Open-Source Software: Risks and
Rewards
Douglas Crisman, Janice Logan, Ph.D., and Manu Bansal, Ph.D.

Douglas Crisman, a partner with Morgan Lewis,
brings the perspective of a software designer and
intellectual property (IP) director for a leading
computer hardware company to his patent law

practice, which includes patent preparation,
licensing, and prelitigation opinions, as well as
IP transactions, due diligence, and counseling.

He routinely works with standards-setting bodies
and consortia on IP issues, and provides advice
on strategic IP management and open source

legal issues ranging from software development
to code review and licensing, and open source

compliance.

Janice (Lee) Logan assists clients with world-
wide intellectual property (IP) strategies at

Morgan Lewis. As a co-leader of the firm’s Asian
Life Sciences Working Group, she works with

non-IP lawyers and brings a deep background in
science to the firm’s life sciences practice, focus-
ing primarily on chemistry, biotechnology, and
medical devices. Janice guides clients through
complex patent procurement and patent litiga-

tion matters. She also manages due diligence for
IP asset transactions. Janice is fluent in Korean

and Japanese.

As a seasoned patent law professional with over
a decade of experience and using his strong

technology background, Manu Bansal assists
clients at Morgan Lewis in building and man-
aging quality patent portfolios attuned to their

business goals. He prepares and prosecutes
patents in electrical and computer engineering

areas including video coding, wireless com-
munication, network architecture, software,
semiconductors, and artificial intelligence.

Manu works on strategic prosecution and post-
grant proceedings involving standard-essential

patents directed to video coding standards
(HEVC/H.265, VVC, AV1, VP9) and wireless
standards (4G/LTE, 5G, IEEE 802.11). He is
admitted in Virginia only, and his practice is

supervised by DC Bar members.

For companies that develop software, whether
for use on internal servers, as part of a cloud-based
business model, or for distribution to end users,
open-source software (OSS) offers some compel-
ling advantages, including low cost and wide avail-
ability. However, before committing to any OSS
solution (especially in a mission-critical role), a
business needs to ask whether the benefits justify the
risks.

This article discusses some of the benefits and risks
of open-source–based software development, includ-
ing the risks inherent in trusting business functions to
public code and in mixing OSS with company code.
Also addressed in this article is a process for avoid-
ing the unintended and unwelcome consequences of
an ill-considered commitment to a particular OSS
solution.

OSS: An Overview
The concept of OSS originated in the “free soft-

ware” movement in the early 1980s, which was a
reaction to concerns the software community had
with the proprietary software model at that time.
Under the proprietary software model, an end user is
provided an executable program, but the end user is
dependent on the software developer or provider for
bug fixes, upgrades, and general maintenance of the
software. To address these concerns, the goal of the
free software movement was to obtain and guarantee
freedoms for software users including, for example,
freedoms to run, study, copy, distribute, and modify
the software.1

The free software movement brought the formation
of the Free Software Foundation (FSF), which sup-
ported the GNU Project2 launched in 1984 to develop
a free, UNIX-like operating system, commonly known
as Linux. Linux was released under the GNU General
Public License (GPL), also famously known as the
“copyleft” license, which was so named to signal the
freedom to modify or distribute software that this
license provides, in contrast with the restrictions for
such activities inherent in traditional copyrights. The
GPL copyleft license was drafted to ensure that free

2	 T h e L i c e n s i n g J o u r n a l 	 NOVEMBER/DECEMBER 2021

software, including any modifications to the software,
remains free (not proprietary).3

However, at the time, the free software movement
was generally viewed as anti-business, and corpora-
tions were concerned about the new model permit-
ting developers to freely copy, modify, or distribute
software, or essentially exercise the rights normally
protected under copyright law, with the only obliga-
tion being to distribute to others under the copyleft
license. These views started turning in 1998 when
Netscape announced that it was considering sharing
the source code of its browser, and corporate America
began to buy into the OSS movement. The OSS move-
ment was organized into a nonprofit corporation, the
Open-Source Initiative (OSI).4

The OSI sought to quickly establish itself as the
“gold standard” of open-source licensing by pub-
lishing the “Open Source Definition,” which pro-
vides clauses to define attributes that software must
embody in order to be considered open source and
outlines distribution terms of OSS.5 Defined simply
and broadly, OSS is source code that may be freely
shared with other programmers, subject to an open-
source license. The use of OSS is now ubiquitous
and has seen explosive growth in recent years. For
example, per Synopsys, there were 84 open-source
components per commercial application in 2016,
and that number grew to 528 open-source compo-
nents in 2020.6 Some of the most famous and widely
used OSS packages include Linux (operating system;
GPL v2), Apache (web server; Apache License 2.0),
MySQL (relational database; GPL v2), Perl (scripting
language; Artistic License and GPL v2), OpenStack
(cloud-computing platform; Apache 2.0), Apache
Hadoop (framework for big data; Apache 2.0), and R
(statistical computing language; GPL v2).7

OSS Benefits
Some of the benefits of OSS include rapid deploy-

ment and low cost. For example, instead of spending
months or years developing an application, a devel-
oper may easily access and download (for very low
cost or free) relevant source code from open-source
platforms such as GitHub and begin modifying it
for his or her application. As such, the OSS remains
available, modifiable, and maintainable. OSS can also
be reliable and secure because, generally, a group of
developers is constantly monitoring and assessing the
source code for bugs and security holes, and report-
ing and fixing the issues to continually improve the
overall quality of the software. Another advantage is
the community that is built around the development

of OSS. For example, OSS is built, developed, and
maintained by many developers and promoters, and,
as such, the contributors enjoy a pride of ownership
in the software that is available to a larger community
for free.

The structure of OSS development also lends itself
to a unique peer development and partnership model,
as the contributors may be individuals, nonprofit
organizations, and corporations. Another benefit to
corporations from relying on an OSS platform is the
ability to outsource one or more portions of an appli-
cation that they are developing to the open-source
community so that they can focus on building and
integrating the proprietary portions of the applica-
tion. Overall, OSS provides an open standard that is
commonly developed, improved, and maintained for
compatibility by many users and entities.

OSS Risks
Using OSS involves significant risks, which fall

into two broad categories—risks related to using
open-source code instead of proprietary code and
risks related to open-source licenses. The following
is a brief overview of these and some other potential
issues.

•	 Open-Source Code–Related Risks

Unlike source code for proprietary software, the
provenance of the source code of the OSS may be
unknown. For example, the OSS may include source
code, the origins of which may be untraceable, or
may include source code of a third-party proprietary
software. Further, typically there is no formal sup-
port or warranty for the OSS. Also, in some cases,
even though an OSS product may be widely used, the
development efforts for that software product may be
poorly funded, which can lead to poor software main-
tenance. Accordingly, a user of such an OSS product
may not be able to rely on it for issue-free deployment
and execution to the same extent that the user may
rely on a proprietary software product.

As discussed above, OSS can be reliable and secure
because any issues or security holes are constantly
identified and addressed by a wider group of devel-
opers. The flip side of this is that its vulnerabilities
are also open to the public and, as a result, it may
be susceptible to significant security risks. Further,
the development of OSS may be out of sync with
the needs of a software company that is intending to
use the OSS. For example, the company may not be
able to have specific bugs fixed or features added to

NOVEMBER/DECEMBER 2021	 T h e L i c e n s i n g J o u r n a l 	 3

the OSS distribution, or may have an internal road-
map with OSS dependencies that does match the
continual development path of that OSS. Also, since
it might not have any role as developer of the OSS,
the company may have no control or predictability
as to the development or quality of its own software
product that relies on OSS. Also, if a company applies
modifications or customizations to a version of OSS,
which is free to do, it may need to apply the modifi-
cations or customizations to every new version of the
OSS, which may not be practical.

Another risk to consider is the mingling of the
proprietary code with the open-source code and vice
versa, which may raise challenges in licensing the
proprietary software. For instance, under some open-
source licenses, if an entity develops software that
includes OSS, it is required to license that software
under the open-source license, which means granting
recipients a license to copy, modify, and redistrib-
ute the software for free. Thus, the developer entity
may lose out on any licensing revenue from what it
considered or intended to be proprietary software.
Moreover, in situations in which the software devel-
oper is requested to disclose the source code, it may
not want to or may not be able to untangle the propri-
etary code from the open-source code.

•	 Open-Source License–Related Risks

The mixing of proprietary code with open-source
code may result in unwarranted licensing compli-
cations. Specifically, under a copyleft open-source
license (e.g., the GPL), the distribution of the software
that has open-source code integrated with propri-
etary code could (based on the nature of the integra-
tion) trigger the obligation of the software developer
to disclose the entire source code, including the pro-
prietary code, under the copyleft open-source license
terms.

Open-source licenses are generally non-negotiable,
i.e., to be accepted as is without any flexibility in
modifying license terms. Also, not all open-source
licenses come with the same or similar scope, and, in
fact, many open-source licenses include non-standard
terms that activate only under specific circumstances,
thus changing the scope of the license. An example
of this is the GPL, under which it is completely safe
to use or modify the OSS for internal use, but, if the
software is distributed, the obligation to disclose or
share the entire source code is triggered, which may
be a concern in certain conditions.

Another example of unique open-source license
terms relates to patents. Some open-source licenses
include patent-related provisions under which certain

uses of the OSS may impose the obligation on the
developer/user of the OSS to grant patent licenses
to others for free. Such patent-related terms may
trigger obligations to grant licenses to patents cur-
rently owned by the OSS user or may be even more
burdensome by asking the developer to grant licenses
to future patents.

The language of open-source licenses may be
ambiguous and, if it has not been litigated, it may
be unpredictable as to how it would be construed or
interpreted if litigation ever resulted.8 Also, if there is
a contentious situation alleging violation of the terms
of an open-source license, it may not be possible to
resolve the issue privately by way of negotiations
between the opposing parties.9 Rather, the enforce-
ment efforts can become public, and can create repu-
tational issues in addition to legal issues for the entity
alleged with the non-compliance of the open-source
license.10

Accordingly, for any developer aiming to acquire
and use or incorporate OSS, it is important to care-
fully review and understand the terms of the open-
source license and consider whether the license terms
are consistent with its intended use and the devel-
oper’s ability to comply with the terms.

Cautionary Tales from Use of
OSS

The following are two case studies that illustrate
how some uses of OSS created problems for corpora-
tions and the lessons we can learn from them.

•	 Case Study 1—Hyper-V (2009)

Here, Linux driver code (under GPL v2) was appar-
ently incorporated into proprietary Hyper-V Linux
driver code. This usage of open-source Linux driver
code was discovered when a user of the Hyper-V
driver code reported, on a Linux internet blog,
that “[t]he driver had both open-source components
which were under GPL, and statically linked to
several binary parts.” Following publication in the
open-source community of this alleged GPL compli-
ance issue, the licensor of the proprietary driver code
reacted swiftly by releasing its Hyper-V drivers as
OSS under the GPL. Some lessons that can be learned
from this case are:

•	 Lesson 1: Training for coders and developers on
proper usage of OSS is important! It’s not clear
how the GPL driver code came to be incorporated
in the Hyper-V driver, but perhaps this could have

4	 T h e L i c e n s i n g J o u r n a l 	 NOVEMBER/DECEMBER 2021

been avoided through additional coder training
(e.g., on company policies regarding the use of
and access to open-source code) and code review
focusing on the use of OSS.

•	 Lesson 2: Alleged failure to comply with terms of
an open-source license can generate unwelcome
news in the open-source community. To avoid
such news, companies need to understand the
requirements of the open-source licenses they use
and be ready to address compliance issues.

•	 Lesson 3: Developers of proprietary code may
want to consider whether to allow coder access to
OSS licensed under copyleft licenses.

•	 Case Study 2—Heartbleed Bug (2014)

This case highlights potential security risks of rely-
ing on open-source code. In this case, there was a bug
in OpenSSL, which is a widely used open-source tool-
kit used to provide secure communications between
web clients/browsers and websites. The bug allowed
passwords to be captured and affected nearly two-
thirds (!) of internet users (excluding banks and
government entities). However, the bug was publicly
disclosed at Openssl.org and was fixed shortly there-
after.11 Some lessons that can be learned from this
case are:

•	 Lesson 1: Ubiquitous OSS components can be
vulnerable and can impact software security for a
large number of users.

•	 Lesson 2: The open-source community can be
relied upon for discovery, disclosure, and fixing
of code vulnerabilities. For example, here, the
OpenSSL community was transparent about the
bug and released a fix the same day as it was dis-
covered and announced.

•	 Lesson 3: It is important to review the level of sup-
port and resources dedicated to key open-source
projects. In this case, in 2014, the OpenSSL proj-
ect, which was used by thousands of companies,
reportedly had only one developer, who was
earning no more than $2,000 in donations each
year.12

Trends in Open-Source
Projects

Recent trends show that many interesting open-
source projects cover a wide variety of technical areas
of interest including, but not limited to, big-data
analytics, machine-based learning, cloud platforms,

and blockchain. Some of the trending open-source
projects include:

•	 Hyperledger by Linux Foundation—related to
modular tools to promote commercial applica-
tions of blockchain technology

•	 Open Stack—a cloud operating system that allows
vast computer, storage, and networking resources
to be provisioned and controlled through a user-
friendly dashboard

•	 R programming language—a popular open-
source tool for data manipulation, calculation,
and graphical display

•	 Life sciences—an extensive library of open-source
tools available from institutions such as the Fred
Hutchinson Cancer Research Center

Patents and OSS
In some respects, an open-source license can ren-

der patents related to the OSS unnecessary or ineffec-
tive. For example, distribution or other public use of
OSS may carry an implied, or, in some instances, an
explicit, license to patents covering the functionalities
of the OSS.

However, patents may still provide a strong shield
to protect intellectual property surrounding OSS in
situations where a competitor takes undue advantage
of the OSS release. For example, in an attempt to
circumvent the open-source license terms, a competi-
tor may implement one or more functionalities of the
released OSS in a proprietary software project with-
out using the open-source code. In such cases, patents
covering those software functionalities can still be
enforced by pursuing a patent-infringement action
against the competitor.

Is an Open-Source License a
Contract?

The answer is likely yes. In Artifex Software,
Inc. v. Hancom, Inc. (N.D. Cal. Apr. 25, 2017), the
court found that the plaintiff adequately pled a
breach-of-contract claim based on alleged viola-
tion of terms of the GNU GPL, e.g., due to incor-
poration by the defendant of the GPL open-source
code in the proprietary code. Additionally, the court
also found that the plaintiff’s contract claim would
not be preempted by its copyright-infringement
claims. Accordingly, companies should be mindful
of the fact that misappropriating OSS and non-
compliance with the open-source license terms can

NOVEMBER/DECEMBER 2021	 T h e L i c e n s i n g J o u r n a l 	 5

potentially expose them on two fronts—under a
breach-of-contract claim and a copyright-infringement
claim.

Licenses Targeted at Cloud
Uses of OSS

Under many copyleft open-source licenses (e.g., the
GPL), the source code disclosure obligations are trig-
gered only when a licensee distributes software that
includes or is derived from the OSS. However, some
open-source licenses impose source code disclosure
obligations on some uses of the open-source code or
its derivatives to offer software services to users via a
network. For example, the Server Side Public License
(SSPL) requires disclosure of source code of modi-
fied versions of the program, as well as ancillary code
that supports the software, if a licensee enables third
parties to interact with the functionality of the pro-
gram via a network. The popular database software,
Mongo DB, which is used on servers, has adopted the
SSPL. As another example, Elasticsearch, a popular
search software used in cloud applications, recently
transitioned from the Apache 2.0 License to the SSPL.
Also, Plausible Analytics’ web analytics software tran-
sitioned in October 2020 from the permissive MIT
License13 to the AGPL v.3, which extends the source
code requirements of the GPL v3 to “prominently
offer all users interacting with [your version of the
Program] remotely through a computer network (if
your version supports such interaction) an opportu-
nity to receive the Corresponding Source of your ver-
sion by providing access to the Corresponding Source
from a network server at no charge, through some
standard or customary means of facilitating copying
of software.”14.

In view of these open-source licenses directed to
cloud-based applications, it is important for open-
source users to be alert about license changes and
evaluate risks associated with planned uses of the
affected software.

Best Practices for Using or
Contributing to OSS

The overall goal for an organization or company
should be to promote safe use of OSS to leverage its
benefits and mitigate its risks. Failure to effectively
manage and track OSS use can result in violations
that may remain undetected for a long time but
come to surface at a critical, inopportune juncture
(e.g., during an acquisition or investment diligence

process) when it may be difficult to correct the
situation. Accordingly, it is imperative to establish
a written open-source policy, as well as internal
processes to implement and enforce the policy. For
example, there should be set processes to review
and approve OSS use requests and also track use of
the OSS. Training programs for coders and develop-
ers should be established and regularly available
to educate them on open-source licenses and their
terms (e.g., the point in software development at
which the obligation to grant a license and disclose
the source code attaches). In setting up a review
process for open-source use requests, there may be
different review tracks for different types of uses/
licenses (e.g., for strictly internal uses of unmodified
OSS vs. OSS used in distributed code or a software
package). For efficiency, a fast-track approval pro-
cess may be considered for a limited set of licenses
and/or a limited set of uses.

For careful consideration of open-source use
requests, each request should identify various fac-
tors for the request, including, but not limited to,
OSS version, its known vulnerabilities, all appli-
cable licenses, availability of the same code under
a non–open-source license, and the strength of the
open-source community (to gauge the scope of the
support and maintenance of the open-source code).
Further, a request should lay out proposed uses of the
open-source code. For example, is the requested use
for a company product? Will the open-source code be
modified? Will it be integrated with proprietary code
and, if so, in what manner (e.g., copy-paste, statically
linked, dynamically linked, or API call)? Will it be
server-based or used in a cloud/software as a service
(SaaS) offering?

In terms of open-source use guidelines, some uses
that are generally considered safe include using OSS
under the Berkeley Software Distribution (BSD) or
MIT license, running company code on Linux OS,
using Lesser General Public License (LGPL) libraries
without modification, and running OSS only on serv-
ers with no distribution (although beware of AGPL
and SSPL licenses). Companies using OSS should be
mindful of the risks involved in integrating any OSS
with proprietary code. Moreover, a generous dose of
caution may be warranted when developing non-GPL
software that is compatible with the functionality of
GPL software, allowing developers to use GPL source
code, or accepting any third-party code for use in one
of the developer’s software products without under-
standing where it came from or under what license.
Lastly, it is a good practice to check code dependen-
cies and related licenses, as open-source codes can
incorporate other open-source codes.

6	 T h e L i c e n s i n g J o u r n a l 	 NOVEMBER/DECEMBER 2021

Companies considering contributing to OSS
should invest in establishing an internal review pro-
cess. Any review of the potential contributions should
first consider reasons for contributing (improving
functionality of strategic OSS, promoting wider use
of company technology, adding customizations to an
open-source project, outsourcing coding to the open-
source community, and/or improving standing with
the open-source community, press, and customers).
Companies should also consider what license will
apply for contributions, whether the contributions
would be subject to third-party encumbrances,
whether the contributions relate to any company
patents, whether there would be a need for multiple
source code trees in the future, and/or whether the
contributions would harm the company’s revenue.

When acquiring or investing in companies where
software is a valuable part of the deal, it is important

to conduct open-source due diligence. As part of the
diligence process, the acquiring/investing company
should ask the target company to identify (a) spe-
cific OSS items used by the target company, includ-
ing OSS licenses associated with each item and
each item’s dependencies; (b) the context of each
use, e.g., whether the OSS is run on a company
server or as part of an SaaS/Cloud offering, and/or
distributed to end users/licensees; and (c) the extent
of integration with proprietary code, e.g., whether
the target has made any modifications and/or
contributions to the OSS. The acquiring/investing
company may want to request a commercial soft-
ware composition scan (e.g., using the BlackDuck
software) to identify license conflicts and request
details as to how the target company manages OSS,
trains employees to safely use OSS, and addresses
OSS vulnerabilities.

	
	 1.	 https://www.gnu.org/philosophy/free-sw.html.
	 2.	 GNU stands for “GNU’s Not Unix.” See http://www.gnu.org/gnu/gnu-

history.html.
	 3.	 https://www.gnu.org/gwm/libredocxml/x53.html.
	 4.	 http://www.opensource.org/.
	 5.	 https://opensource.org/licenses/alphabetical.
	 6.	 https://www.synopsys.com/software-integrity/resources/analyst-reports/

open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1.
	 7.	 https://www.synopsys.com/blogs/software-security/top-open-source-

licenses/.
	 8.	 https://www.gnu.org/licenses/gpl-violation.html.
	 9.	 https://sfconservancy.org/copyleft-compliance/.
	10.	 2015 VMware Suit – unlicensed use of Linux code in proprietary “vmker-

nel” (https://sfconservancy.org/news/2015/mar/05/vmware-lawsuit/); 2019

Case dismissed (procedural grounds) - Vmware agreed to remove vmk-
linux from vSphere product (https://sfconservancy.org/news/2019/apr/02/
vmware-no-appeal/).

	11.	 “A missing bounds check in the handling of the TLS heartbeat extension
can be used to reveal up to 64kB of memory to a connected client or
server (a.k.a. Heartbleed).” “Fixed in OpenSSL 1.0.1g (Affected 1.0.1f,
1.0.1e, 1.0.1d, 1.0.1c, 1.0.1b, 1.0.1a, 1.0.1).” http://openssl.org/news/vul-
nerabilities.html.

	12.	 https://www.theregister.com/2021/05/10/untangling_open_sources_
sustainability_problem/.

	13.	 A permissive free software license originated at the Massachusetts
Institute of Technology (MIT). See https://en.wikipedia.org/wiki/
MIT_License.

	14.	 Section 3 of the GNU Affero General Public License.

Copyright © 2021 CCH Incorporated. All Rights Reserved.
Reprinted from The Licensing Journal, November/December 2021,

Volume 41, Number 10, pages 1–6, with permission from Wolters Kluwer,
New York, NY, 1-800-638-8437, www.WoltersKluwerLR.com

https://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/gnu/gnu-history.html
https://www.gnu.org/gwm/libredocxml/x53.html
http://www.opensource.org/
https://opensource.org/licenses/alphabetical
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://www.gnu.org/licenses/gpl-violation.html
https://sfconservancy.org/copyleft-compliance/
https://sfconservancy.org/news/2015/mar/05/vmware-lawsuit/
https://sfconservancy.org/news/2019/apr/02/vmware-no-appeal/
https://sfconservancy.org/news/2019/apr/02/vmware-no-appeal/
http://openssl.org/news/vulnerabilities.html
http://openssl.org/news/vulnerabilities.html
https://www.theregister.com/2021/05/10/untangling_open_sources_sustainability_problem/
https://www.theregister.com/2021/05/10/untangling_open_sources_sustainability_problem/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License

