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Short Background

1994 — 1998: Computer Science & Engineering Bachelors (11T)
1998 — 1999: Computer Science Masters (U Pitt)
2000 — 2017: R&D, Engineering, and Leadership Roles

d (Cisco Systems, Intel, AMD, and Hardware Startups)
‘ix 2014 — 2018: J.D. at Santa Clara University

2018 — 2021: IP Associate, Morgan Lewis
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Presentation Overview

Part 1: Background (Technology & IP Overview)

Growth in Al Applications & Data Part 2. Case Studies (Patenting Strategies)

Limitations of Conventional Hardware
Need for Specialized Hardware
Al Hardware Technologies

1. Training (Nvidia, Intel, Cerebras, Graphcore)
2. Cloud Computing (Google)
3. Datacenter (Facebook)
4. FPGA (AMD + Xilinx)
Part 3: Other Topics 5. Neuromorphic Computing (Brainchip)
6
7
8
9.
1

HowhE

Optical Computing (Luminous)
Fully Homomorphic Encryption (Cornami)
Analog Compute-in-Memory (Mythic)
Inference (Qualcomm)

0. FP Conversion (Cambricon)

Open-Source Software / Hardware
Trade Secret Protection

Defensive Publications

Al Hardware-Related Patent Litigation
Conclusion
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Part 1: Background (Technology & IP Overview)

1. Growth in Al Applications and Data

2. Limitations of Conventional Hardware

3. Need for Specialized Hardware

Source: Efficient Processing of
Deep Neural Networks, Sze et al.

4. Al Hardware Technologies
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Growth in Al Applications and Data
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Limitations of Conventional Hardware
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Need for Specialized Hardware

Deep learning models have three properties:
1. Tolerance for reduced-precision computations

2. Computations are mostly compositions of matrix multiplies, vector

operations, applications of convolutional kernels, and dense linear
algebra operations.

3. Not a significant use of branch predictors, speculative execution,
hyper-threaded execution processing cores and deep cache
memory hierarchies and TLB

Morgan Lewis @



Need for Specialized Hardware

(Training vs. Inference)

e Training and inference have very different compute and
responsiveness characteristics

— For training, larger models on larger data sets require multiple chips
— Need larger-scale systems, accelerators, and high-performance
interconnects.
— For inference, 8-bit integer-only calculations are sufficient for many models.
— Single-chip inference on low-power devices in areas like speech or
vision target low-precision linear algebra computations at high
performance/Watt.

Morgan Lewis @



Need for Reducing Power Consumption

Embedded devices have limited battery capacity, data centers have

a power ceiling due to cooling cost.

Common carhon footprint benchmarks
in Ihs of CO2 equivalent

Roundrip flight by/w NY and SF (1

passenger) | %8

Human life (avg. 1 year) I 11,023
Americanife (avg. 1 year) l 36,15

US car including fuel (avg. 1 lifetime) 126,000

Transformer (213M parameters) w/ neural
architecture search _

Source: MIT Technology Review
Morgan Lewis

Operation: Energy | Relative Energy Cost
(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Source: Horowitz, ISSCC 2014




Major Semiconductor Disruption Is Underway

Al Acceleration Chipset Forecast
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Al Architecture

S . Structured Data Algorithms, e.g.: Human-Machine Usars
-, . Data Cenditioning Teaming (CoA) (Missions)
B . e,

ources structured | Curation

Source: Survey of Machine Learning Accelerators,
Reuther et al.

Silicon alternatives

TRAINING EVALUATION

Source: Microsoft (venturbeat.com)
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Al Hardware Architecture

Temporal Architecture
(SIMD/SIMT)

Memory Hierarchy
Register File

ALU ALU ALU ALU
11 11 111 111
lavw] JAawuw] Jaw] | AaLu |

11 Il 11 1
law ] [aw] Jaw] | aLu |
lavw] JAaw] JAaw] | ALu |

Morgan Lewis

Temporal vs Spatial Architecture

Spatial Architecture
(Dataflow Processing)
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Model vs Data Parallelism

Data Parallelism
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Source: TPU vs GPU vs Cerebras vs Graphcore: A Fair Comparison between ML Hardware, Mahmoud Khairy
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Innovation Landscape

Analog Optical Neuromorphic
Computing Computing Computing
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Innovation Landscape

Technology Area Example Innovations Example Players

Application logic, Faster CPUs, special Intel, ARM, AMD, IBM
system performance, and instructions, data format
efficiency, majority of Al (e.g., bfloatl16)

inferencing on CPU

GPU Majority of Al training is on Specialized MAC cores Nvidia, Intel, AMD,
GPU, process technology, Imagination
software support /
ecosystem
Memory & Training requires lots of Near memory, Resistive Nvidia, Intel, Cerebras,
Interconnect data, and data movement RAM (ReRAM), NOR Flash GraphCore

technology, RDMA over
Converged Ethernet (RoCE)

Morgan Lewis @



Innovation Landscape

Technology Area Example Innovations Example Players

Power Optimizations

Analog computation

Optical computing

Morgan Lewis

Lower energy costs,
improve reliability in data
centers, inferencing and
edge computing need low
power

Low-power

Speed of light data transfer,
power savings

Embedded FPGA for edge
inferencing, custom NN,
dataflow, NOR Flash for in-
memory, exploit sparsity,
low bit quantization, reduce
memory bottlenecks

Flash components for in-
memory computation,
resistive materials, “charge-
domain” technology

Use light beams, which
interact linearly through the
superposition effect, for
computing linear algebra

Flex Logix, SiMa.ai, Horizon
Robotics, BrainChip, Hailo,
LeapMind, Movidius, Lattice
Semiconductor, Gyrfalcon
Technology

Mythic, LightOn, AlStorm,
Analog Inference

IBM, LightOn, Fathom
Computing, Lightelligence,
Lightmatter, Luminous



Innovation Landscape

Technology Area

Importance

Example Innovations

Example Players

Neuromorphic computing

Sparsity

Morgan Lewis

Lower energy costs,
process visual and auditory
stimuli as efficiently as
brain

Network weights ~ 0 and
contribute negligibly to the
overall results. Sparse
matrix techniques ignore
the computation associated
with zero and near-zero
values

Spiking or Pulsed Neural
Networks emulate brain
functions

Pruning, model sparsity,
sparse evolutionary
training

IBM TrueNorth, Intel Loihi
SynSense, General Vision,
BrainChip

GrAl Matter Labs,
Tenstorrent



Evaluation Metrics for ML Accelerators

e Accuracy

e Throughput (high volume data, real-time)

e Latency (for interactive applications)

e Energy and Power (embedded devices, data center cooling costs)
e Hardware Cost

e Flexibility (range of models and tasks)

e Scalability

Source: Efficient Processing of Deep Neural Networks, Sze et al.
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Example Metrics for ML Accelerators (Training)
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GraphCore
DELL 1PU
A6x IPU chips
(8 cards)
TSMC 16nm

=276
a4u
a.s
2
Bi-directional
rimng (=00
SB/sec/chip)
ax Ethernet
100 Gb/sec
Yes (2 CPUs
+ 0.7 TB merm
-+ 16 TE SSD)
2,400
4,800
o.8
10SK

Unkown

a. .8
o4a

o.s5

Unkowwn
i1,Z0o0

o.B3
Unkown
2.5

Unkown

Mahmoud Khairy



Benchmarks for ML Accelerators (MLPerf)

Benchmark results (minutes)

Object
Image detection, |Object Reinforce-
classifi- ||u'\"- detection, Translation | Translation |Recom- ment
cation weight heavy-wt. |, . 3 o Learning
| | | | |MavieLens- |
Results from other rounds: s L WNTEGC 120M Eo
L] Submitter s)‘S[Em Processor |f |Accelerator | Software ResMat-34 f |NCF Mini Go
* MLPerf Inference v0.5 results TPUV3,32 TPUVA 16| TonsorF 14.1.dov 12 61 1
* MLPerf Inference v0.6 skipped to align with training [TPUVa.128 | [TPuva 54 TensorFlow A.dev] 389 i
TPUV3,256 TPUV3 276 :
* MLPerf Inference v0.7 results TPOwIE12 T TTeuva T 1.79| 2.51| | I
[TPUVa 1024 LG | 134| | 211 | I
) o TPUV3.2048 TPUV3 121 :
® Datacenter, Closed Division
Datacenter, Open Division |Intef CLX B260L 164} I I I I I !
NVIDIA T 15.22 i
Edge, Closed Division NVIDIA Tosla V 2236 20.55 20.34 '
Edge, Open Division
Mobile Phones, Closed Division Results
Mobile Phones, Open Division Task Medical imaging Speech-to-text Natural Language Processing
Mobile Notebooks. Closed Division Data mageNet 15 2019 LibriSpeech SQuAD V1.1 1 ck Logs
Model ResMet Uhet RNN-T BERT DLRM
Mobile Notebooks, Open Division Accuracy
[%FP32 ref) 99.00 99.00 99.00 99,50 99.00
Scenarlo rver Offling = Offling Server Offine | Server O Server Offline
& A l & | Software Units gueries's |samples/s samples/s | samples's | queries/s |[samplesis s|gueres/s |samples's 5|0
2[NVIDIA T4 4[TensorRT 7.2, CUDA 11.0 Update 1 22,973 27 27 3397] 5489 g
2|NVIDIA T4 | 6| TensarRT 7.2, CUDA 11.0 Update 1 17 268 24| 4 | 206,499 | 3.
2[NVIDIA A100-PCle | 2[TensorRT 7.2, CUDA 11.0, cuDNN 8 62,885 7a 74| 14600 16962|  5.100[  5610| 4544084
2[NVIDIA GRID T4-160 | 4[TansorRT 7.2, CUDA 11.0 Update 1 22,726 | | g
2|NVIDIA Quadro RTX 6000 4| TensorRT 7.2, CUDA 11.0. cuDNN & §9.130 44 11,102 15,052 4,849 322834 |3
2 [NVIDIA Quadra RTX 6000 | 10{TensorRT 7.2, CUDA 11.0 Update 1 150 388 163 163| 29608 12,029 a
2|NVIDIA Quadro RTX 8000 | 3[TensorRT 7.2, CUDA 11.0, cuDNN 8 44,750 54| 54 3,629 270,418|2.
2|NVIDIA Quadro RTX 8000 8| TensorRT 7.2, CUDA 11.0 Update 1 118,210 142 142 24 828 9 567 d
2|NVIDIA Quadro RTX 8000 10| TensorRT 7.2, CUDA 11.0, cuDNN 8, 148,124 163 163 29,528 11,944 TIT956| 929.411|d
1[NVIDIATA | 4[TensorRT 7.2.0.14, CUDA 11.0.207 23290 28| 28| 2096 1,708 126514 1262870
2|NVIDIA T4 | _4|TensorRT 7.2.0.14, CUDA 11.0.207 23,644 29 23] a1 1.739 | 126,015 131.571]g

Source: mlperf.org
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Global Patent Landscape

NVIDIA

Source: Forbes.com

Chinese Al Chip Startup Enflame Brings in
$278.5M in New Funding

wary 7, 2021 by

Cambricon, once Huawei's core Al chip supplier, eyes
$400M IPO

Source: TechCrunch (June 24, 2020) Source: enterpriseai.news
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Part 2: Case Studies

Agenda (claiming strategies, continuation strategies, legal hurdles,
overcoming the legal hurdles through claim amendments)

« Training (Nvidia, Intel, Cerebras, Graphcore)
* Cloud Computing (Google)

« Datacenter (Facebook)

« FPGA (AMD + Xilinx)

* Neuromorphic Computing (Brainchip)

e Optical Computing (Luminous)

* Fully Homomorphic Encryption (Cornami)

* Analog Compute-in-Memory (Mythic)

* Inference (Qualcomm)

 FP Conversion (Cambricon)

Morgan Lewis @



Case Study: Nvidia A100 (Training)

PCle based system

2.5x  Tensor Core math BW (FP16) m.- 11 S— = o |
$ }

BX Sparse Tensor Core math BV (FR16)

1.9x  Fffective RF BW vith A100 Tensor Core

2.8x  Effective RF capacity with Async-Copy bypassing RF

3.0x  Effective SMEM BW with A100 Tensor Core and Async-Copy et 2 3 7 6 |

1.3x  SMEM capacity NVLINK based system

23 L2BW Ei’ m:

q POe p.;.._,
6.7x L2 capacity, +Residency Control H s B *J L J
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2.0x NYLINK BW

Source: NVIDIA
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Case Study: Nvidia Mellanox (Traning)

MELLANOX TECHNOLOGIES

ALLOWANCE RATE

TOTAL NUMBER OF APPLICATIONS

501

TOTAL®

421 PATENTED APPLICATIONS
41 ABANDONMED APPLICATIONS

39 PENDING APPLICATIONS

Israel News | Tech News

Worth $7 Billion? This Israeli Chip
Maker Is Now at the Heart of Nvidia's
New Strategy

Mellanox's new processor looks to be the central component in Nvidia’s move
into the data market — and one of the company’s most important products

Source: PatentAdvisor

Morgan Lewis
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GCranted /abandoned shown in year granted /abandoned.
Pending shown in year filed.

Source: PatentAdvisor




Case Study: Intel Nervana vs Intel Habana (Training)

. Nervana NNP-T training chip
~ high-end GPUs, supports HBM2, 16 GB (adds cost and manufacturing complexity),

Model parallelism through a fast, low-latency fabric on the die, not based on industry-standard
Ethernet

NNP-T chip was being developed on TSMC, while NNP-I chip was being manufactured on Intel's 10-nm
facility.

. Habana
Fabric supports RDMA over Converged Ethernet (RoCE)
Converged architecture for inference and training

Nervana software stack already supports model parallelism.

Morgan Lewis @



Case Study: Intel Habana (Training)

e Intel acquired Habana Labs for $2 Billion HaBanatass

in December 20109. ALLOWANCE RATE
e At the time of acquisition, Habana Labs
had 3 Issued patents and 3 pendlng TOTAL MUMBER OF APPLICATIONS
H H S PATEMNTED APPLICATIOMNS
applications. e . O ABANDONED AFFLICATIONS
D PEMDING APPLICATIOMS
Source: PatentAdvisor
Filing Issue Number of Office Actions between
Application ‘. Date || Status ‘. Date [l Filing Date and Patent Issuance
15/700,213 2017-09-11  Patented Case 2020-12-01 1 office actions (Examiner average is 1.4) Hiding latency of multiplier-accumulator using partial results
16/150,299 2018-10-03  Patented Case 2020-12-01 2 office actions (Examiner average is 1.6) Processor Suspension Buffer and Instruction Queue
16/136,204 2018-09-20  Patented Case 2020-07-14 1 office actions (Examiner average is 1.4) Hardware accelerator for outer-product matrix multiplication
15/883,119 2018-01-30  Patented Case 2019-11-26 1 office actions (Examiner average is 1.8) LARGE-SCALE COMPUTATIONS USING AN ADAPTIVE NUMERICAL FORMAT
16/024,862 2018-07-01  Patented Case 2019-11-26 1 office actions (Examiner average is 1.7) DATA COMPRESSION SCHEME UTILIZING A REPETITIVE VALUE WITHIN THE DATA STREAM
15/700,207 2017-09-11  Patented Case 2019-11-26 2 office actions (Examiner average is 1.8) MATRIX MULTIPLICATION ENGINE

Morgan Lewis (29]



Intel Habana (Training) — Example Claming Strategy

e  App. No. 15/700,213 (Patent No. 10,853,448, issued 12/01/2020)

Title: Hiding latency of multiplier-accumulator using partial results

Filed 09/11/2017; 1 Office Action (Art Unit 2182)

1. Computational apparatus, comprising:
amemory, which is configured to contain multiple matrices of input data values;
an array of processing elements, each configured to perform multiplications of respective &
26
I

first and second input operands and to accumulate products of the multiplication to generate
respective output values; and
data access logic, which is configured to select from the memory a plurality of mutually-

disjoint first matrices and a second matrix, and to distribute to the processing elements the input | S — UNIOpg : |—M
data values in a sequence that is interleaved among the first matrices, along with corresponding i 7 #
input data values from the second matrix, so s to cause the processing elements to compute, in 3] TransposeEngne | [ Transpose Engne |28 “
the interleaved sequence, respective espvekatens matrix multiplications of each of the first s i
matrices with the second matrix, wherein the processing elements have a latency of a given PustLoas 41| OpALoad 36 35 @@””
number of clock cyeles for each multiply-accumulate operation, and wherein the data access \ I I //\32
logic. 1s configured to select and distribute the input data values i the interleaved sequence from FT T T T T 111711 L T T T T
anumber of the first matrices that is equal to the given number. I 1
[eo]e1]e2 53}34\55|85L719b‘sﬂmjamjm:ﬂ 4| shou
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Intel Habana — Overcoming Section 101 Rejection

App. No. 15/700,207 (Patent No. 10,489,479, issued 11/26/2019)
Title: Matrix Multiplication Engine; Filed 09/11/2017; 2 Office Actions (Art Unit 2182)

)
1. (Currently amended) Computational apparatus,
comp Points 5-13. Declarant steps through a series of arguments to support of a legal

conclusion that it would not have been obvious to one of ordinary skill in the art before L+ 5.4
secao) the time of effective filing to combine the references applied by Examiner. Declarant least
thref opinion testimony is entitled to no weight because this opinion is on the ultimate legal [ths in
@ PT| conclusion at issue, whether it would have been obvious to one of ordinary skillin the [Fature
dime art before the time of effective filing to combine references. See MPEP 716.01 (c).lIL F€

Essin
However, applicant makes various factual statements that have been given EES
elem| pctive
] weight by Examiner. Point 6 with respect to the Application covers an apparatus and
firs - r ducts

T

of the multiplication to generate a respective output value;

and

and

Examiner respectfully disagrees. Applicant has arguably claimed specific

mathematical calculations, not claimed a specific mathematical calculations, i.e., the

= = x =T —r r e

extq
inpuy
dat g
arra
rod

of 1

that will be applied to the mathematical calculations. However, with respect to the
computational apparatus itself, nothing specific is claimed. Instead the claimed
invention merely generally links an array of processing elements, data access logic, and

a memory o the recited mathematical calculations. This does not result in integration of

the abstract idea into a practical application. Furtharmora, although the mathematical

construct may result in facilitation of rapid and efficient computation, it does not result in

an improvement to the functioning of the computer apparatus per se.

respectively of the first and second pluralities of vectors.

Morgan Lewis
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Case Study: Cerebras (Training)

Cerebras Wafer
Scale Engine (WSE)

The Most Powerful Processor for Al

400,000 Al-optimized cores
46,225 mm? silicon

1.2 trillion transistors

18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process

. Source: Cerebras (HotChips 2020
Morgan Lewis ( P ) @



Case Study: Cerebras (Training)

NSEW

Single tile Single die Wafer Scale Engine
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Source: Cerebras Systems (SC 2020)
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Case Study: Cerebras (Training)

Source: PatentAdvisor

CEREBRAS SYSTEMS

ALLOWANCE RATE

TOTAL NUMBER OF APPLICATIONS

3 3 18 PATENTED APPLICATIONS

TOTALO 0 ABANDONED APPLICATIONS

15 PENDING APPLICATIONS

Source: Techcrunch.com

Morgan Lewis

@ patented @ Abandoned @ Pending

20

10 I

2019 2020 2021

Granted/abandoned shown in year granted/abandoned.
Pending shown in year filed.

Problems solved:

communicating across the scribe lines between chip
handling yield

thermal expansion,

packaging and

power/cooling




Cerebras (Training) — Continuation Stratgy

e  App. No. 16/019,882 (Patent No. 10,366,967, issued 7/30/2019)
Title: Apparatus and Method for Multi-Die Interconnection;

Filed 06/27/2018; 2 Office Actions (Art Unit 2124)

1. (CURRENTLY AMENDED) A—bemieeﬂdﬂe{ei—wﬂ-fe&—wgw

100 comprising:
5 a bedythe body-ofthe-semiconductor wafer comprisine a single continueus
substrate-fermed-with-semiconductor-material;

110

C H | LD C ONT' N U | TY DATA a plurality of distinet-die lithographically formed within the bedy-efthe

semiconductor substrate-wafer, whereinesehof the plurality of distinetdie is-integralls
16/169,227 filed on 10-24-2018 which is Patented claims the benefit of 16/019,882

164174 N10 fi { a whirh i i i 161N n net-diced from-the body prising i inga p ity i ges;
6/174,019 filed on 10-29-2018 which is Patented claims the benefit of 16/019,382 comprising u first dic defining a plurality of dic edzes; and

a circuit layver formed at the plurality of die, the circuit layer comprising a
16/251 522 fi 01-18- whichi i I 16/019 882 i . R .
6/251,522 filed on 01-18-2019 which is Patented claims the benefit of 16/0 9,882 » plurality of inter-die eiesit-connections that communicatively connect die of the

N aed i i e plurality of inter-die connections comprising a first set of inter-die

16/743 485 filed on 01-15-2020 which is Patented claims the benefit of 16/019,882

connections associated with the first die-eaehs
16/994,160 filed on 08-14-2020 which is Pending claims the benefit of 16/019,882 P R SRR ety g 0| il il

140

) wherein the first set of inter-die connections comprises, for each die edge of the first die,

a respective inter-die connection that crosses the die edge.

FIGURE 1

Morgan Lewis @




Cerebras (Training) — Software Claim Strategy

e  App. No. 16/463,091 (Patent No. 10,614,357, issued 7/4/2020)

Title: Dataflow Triggered Tasks for Accelerated Deep Learning;

Filed 5/22/2019; 1 Office Action (Art Unit 2123)

3. (currently amended) A method comprising:
sending a fabric packel by a sending processing element to a fabric. the fabric packet

Doep e : ik
Learning comprising a virtual channel specifier and a fabric packet pavload:

& Acceleralor,
400

routing the fabric packet via the fabric from the sending processing element to a receiving

_Forward. 401 __

e i ] NI
Owits. 402 processing element via zero or more routing processing elements. the routing in
1 e msssssssssss——————
accordance with the virtual channel specifier:
[He o

FPGAS FPGAS in the receiving processing clement, receiving the fabric packet from the fabric, reading
2

one or more instructions from a memory of the receiving processing clement at an
address based at least in part on the virtual channel specifier, and using at least a
portion of the fabric packet pavload as an input operand to execute at least one of

the one or more instructions.

wherein the virtual channel specifier is one of a plurality of virtual channel specifiers

each of the plurality of virtual channel specifiers is associated with a respective set

I
I
I
I ]
I i
I I
= I
& : : of one or more sets ol fabric packets, and the receiving comprises associating the
3 ! fabric packet with the respective set associated with the virtual channel specifier:
= i Labnic packet with the res
[ - 1
re' o - i and
! 1
: T - l + hed-efelaim2—wherein a block/unblock state is maintained for each of the virtual
I
' [PE PE I channel specifiers, and the block/unblock state of a particular one of the virtual
g
: : channel specifiers is sel to a block state in response to a block instruction
1| [PE PE i : -
9 ' specifyving the particular one of the virtual channel specifiers and the
I 1 - .
¥ A==t -- block/unblock state of the parucular one of the virtual channel specifiers is set to
b Waler. 412 g an unblock state in response to an unblock instruction specifying the particular one

of the virtual channel specifiers.

Morgan Lewis



Case Study: Graphcore (Training)

GRAPHCORE

ALLOWANCE RATE

TOTAL NUMBER OF APPLICATIONS

7 6 17 PATENTED APPLICATIONS

T0TAL® 0 ABAMDONED APPLICATIONS
OTA

59 PENDING APPLICATIONS

1

Two different plans

GPU + DRAMs IPU pair with
on interposer distributed SRAM

6GB @ 900GB/s B600MB @ 90TB/s, zero latency

Same total power, similar active logic in both cases

Source: GraphCore (Stanford 2018)

Source: PatentAdvisor

Morgan Lewis
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@ Patented

YEAR 2018

Pending: 13

i

2018

Cranted/abandoned shown in year granted /abandoned.
Pending shown in year filed.

@® Abandoned ® Pending

2019 2020




Graphcore (Training) — Software Claim Strategy

. App. No. 15/886,053 (Patent No. 10,802,536, issued 10/13/2020)
Title: Compiler Method; Filed 2/1/2018; 1 Office Action (Art Unit 2186)

50 72b 1. (Original) A computer implemented method of generating multiple programs to

| ?0 72 deliver a computerised function, each program to be executed in a processing unil of a computer
) p prog p I p
IR i / ?28 / comprising a plurality of processing units each having instruction storage for holding a local
program, an execution unit for executing the local program and data storage for holding data, a

switching fabric connected to an output interface of each processing unit and connectable to an

CODELETS

GRAPH e —— COMPILER L ) | — input interface of each processing unit by switching circuitry controllable by each processing

— PRUGRAHS 72 unit, and a synchronisation module operable to generate a synchronisation signal, the method
| s+ | comprising:
J B

3\ generating a local program for each processing unil comprising a sequence of executable
i ?2 instructions;
TILE determining for each processing unit a relative time of execution of instructions of each
DATA X local program whereby a local program allocated to one processing unit is scheduled to execute

] with a predetermined delay relative to a synchronisation signal a send instruction to transmit at

s 74 least one data packet at a predetermined transmit time, relative to the synchronisation signal.
destined for a recipient processing unit but having no destination identifier, and a local program
allocated to the recipient processing unit is scheduled to execute at a predetermined switch time a

switch control instruction to control the switching circuitry to connect its processing unit wire to

Figure 7 the switching fabric to receive the data packet at a receive time.

Morgan Lewis (38)



Google (Cloud Computing) — Example Circuit Claim

App. No. 15/389,202 (Patent No. 9,710,748, issued 7/18/2017)
Title: Neural Network Processor; Filed 12/22/2016; 1 Office Action (Art Unit 2124)

boo

b

Dynamic Memory
210

Unified Buffer Matrix Computation Unit

Direct Memory \ Tl
Access Engine —
204
-
Vector Computation
Unit -
214
Host Interface Sequencer
—_—
206

1. (Currently Amended) A circuit for performing neural network computations for a neural
network comprising a plurality of neural network layers, the circuit comprising:
a matrix computation unit configured to, for each of the plurality of neural network

layers:

receive a plurality of weight inputs and a plurality of activation inputs for the
neural network laver, and

generate a plurality of accumulated values based on the plurality of weight inputs
and the plurality of activation inputs,

wherein the matrix computation unit is configured as a two dimensional systolic

first plurality of cells along a first dimension of the systolic array, and wherein the plurality of

activation inputs is shifted through a second plurality of cells along a second dimension of the

systolic array; and
a vector computation unit communicatively coupled to the matrix computation unit and
configured to, for each of the plurality of neural network layers:
apply an activation function to each of the plurality of accumulated valse-values
for the neural network layer generated by the matrix computation unit to generate a plurality of

activated values for the neural network layer

Morgan Lewis




Case Study: Google (Cloud Computing)

Google Tensor Processing Unit TPUv3

Diynamic. Memary

. 210 Scalar TPU Core O i TPU Core 1 Scalar

Unit D = Compute D = Host Unit
{ | I | |:| = Memory |:| = Interconnect I

Matrix Matrix
Unifiect Fush Matix Cormodation Li Ve
Direct Mermory . 205' . | E— p T T]“ﬁim it *3
Access Engine 4——— 0
204
A

Multiply Multiply

— E Unit (2x)
4 +30% bIw |

Host Interface Sequencer
nz 208
Queues Queues
S FIG. 2

@

. Source: Google (HotChips 2020)
Morgan Lewis @



Case Study: Facebook (Datacenter)

Node 1 Mode 2 Mode 3 Mode 1 Mode 2 Node 3
4 Compute tocal update | | locsl update | | ioocad wpdace iocal updrte | | local updaie | | bocl updeiz

4mmm Communication \l’,
allreducs I aliza

- Noda 1 Mode 2 HWode 3 MNode 1 Mode 2 Mode 3

4mmm Nemory capacity obial usdate | | phobal updatre | | giobal wpdans liepdues | | ail upcnes an updanes

& bandwidth = e [ | E ﬁ i

| . ) .
Dense Sparse Sparse - In uts FfDm nEt‘ Drk
Features Foatures Features pUts fa) b
Fig. 4. Communication pattems. that are commaon in (a) data- and (b) model-
Fig. 2. High-level overview of DLRM. parzllelism. Both communication pattems need to be supported in DLREM.

B-socket CPU

DCP accelerator hodule FoTE A rarar Systerm

Accelerator Fabric

Camh [ =3 ]

Fig. 7- d{a) High-level overview of Zion systcm intcgration and (b detailed block diagram of the Zion platform

Source: Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

Morgan Lewis @



Case Study: Facebook (Datacenter)

1
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Fig. 12, Comparison of local vs global bandwidth for different scale-out
systems. The TPU system does not differentiate between local and ghobal
bamndwidth since it is flat opology.
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Fig. 9. Different topology design space for an 8-node sysiem.
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¥

Fig. 13, A wview of interconnect software and hardware stack

Source: Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

Morgan Lewis



AMD + Xilinx (FPGA) — Own Prior Art?

App. No. 16/451,804 (pending)

Title: Method and apparatus for efficient
programmable instructions in computer systems;

Filed: 06/25/2019 (1 Office Action)

120 121 122 123 124
. ; d

Ri | R2 | R3 | OPCODE | CONFIG IXX) 113

_110 CYCLE L__112 ;
CLOCK 125 — —
' { — —

INSTRUCTION
MEMORY

SEQUENCER 5
11—t 101
10la
101h
[ CobEs
116 ~ 13
INTERRUPT / NEXT ADDRESS 10In

104 100

GENERAL PURPOSE 'O

FIG. 1

Morgan Lewis

In a common implementation, a FPGA on a peripheral component
interconnect express (PCle) slotl is coupled to a processor via the PCle
bus. Sending computation to the FPGA over the PCle bus is a long-latency
event, with routine accesses to the device going through a device driver
and potentially taking hundreds of cycles. when the FPGA is finished with
the computation, the FPGA typically generates an interrupt, and handling
the interrupt can cause additional delay. Accordingly, more efficient ways
of performing computations using programmable logic devices are

1. A processor comprising:
a first programmable execution unit;
a dispatch unit; and
a memory;
wherein the processor is configured to:
load a first program of an application into the memory;
detect a bitfile portion of the first program;

program the first programmable execution unit with the bitfile portion of
the first program;

program the dispatch unit to map a first set of specialized instructions to
the first programmable execution unit; and

during execution of the first program, dispatch any specialized
instruction of the first set to the first programmable execution unit for
execution.




Case Study: Brainchip (Neuromorphic Computing)

BRAINCHIP

ALLOWANCE RATE

Source: PatentAdvisor

12

TOTALO®

BrainChip is a global technology company that has developed a revolutionary advanced neural networking processor that brings

2
TOTAL NUMBER OF APPLICATIONS . .

® ratented @ Abandoned @ Pending

2019 2020

abandoned.

Morgan Lewis

Source: Brainchip




Brainchip (Neuromorphic Computing) —

Non-Patent Literature Prior Art

. App. No. 12/243,697 (Patent No. 8,250,011, issued 8/21/2012)

Title: AUTONOMOUS LEARNING DYNAMIC ARTIFICIAL NEURAL COMPUTING DEVICE AND BRAIN INSPIRED
SYSTEM; Filed 2/1/2018; 1 Office Action (Art Unit 2122)

" yoapse Z
1 s0MA , our

war QRCuIT
BRRAY

IEEE TRANSACTIONS ON NEURAL NETWORKS., VOL. 17, NO. I, JANUARY 2006

A VLSI Array of Low-Power Spiking Neurons
and Bistable Synapses With Spike-Timing
Dependent Plasticity

Giacomo Indiveri, Member, IEEE, Elisabetta Chicca, and Rodney Douglas

Lo |

Mext Neuron in Hierarchy

war

Figure 3a

n Sy Dynamic Artificial Neuron
war BLOCK DIAGRAM

Morgan Lewis

1. (currently amended) An information processing system intended for use in
artificial inteHligence, consisting-of intelligence and having a plurality of digital artificial neuron

circuits connected in an array, the system comprising

a first plurality of digital dynamic synapse circuits, wherein each digital dynamic
synapse circuit contains a binary register that stores a value representing neurotransmitter type
and level, wherein the digital dynamic svnapse circuits comprise eomprising a means of leamning
and responding to input signals signals, either by producing [[a]] or compounding strength-value
the value, thereby simulating behavior of a biological synapse; and e-bislegieal Post Synaptie

atemporal integrator circuit that integrates and combines each individually
simulated synapse neurotransmitier type and value Post Synaptic Polential-values over time,
wherein time is dependent on the neurotransmitter type stored in each digital dynamic synapse

@ second-phirhbeofdvramte Soma cirouls eoch copableobproducneore vt

1 ! ik dontial volio hao had ar dad o clorad
more pulses-when-the-dntesrated P vatlue has : ]
variable threshold value,



Case Study: Luminous Computing

(Optical Computing)

LUMINOUS COMPUTING

ALLOWANCE RATE

TOTAL NUMBER OF APPLICATIONS

5 1
o 0 ABANDONED APPLICATIONS
TOTAL

4

Computing / Microchip:

Bill Gates just backed a
chip startup that uses light
to turbocharge Al

Luminocus Computing has developed an optical microchip that runs
Al models much faster than other semiconductors while using less
power,

by Martin Giles June 13, 2018

Source: PatentAdvisor

® ratented @ Abandoned @ Pending

5
2.5

. I

2020
Granted/abandoned shown in year granted/abandoned.
Pending shown in year filed.
Optical solution

Luminous sees light as the answer. It uses lasers to beam light through tiny
structures on its chip, known as waveguides. By using different colors of
light to move multiple pieces of data through waveguides at the same time, it

can outstrip the data-carrying capabilities of conventional electrical chips.

The ability to transport very large amounts of information swiftly means
optical processors are ideally suited (o handling the vast number of
computations that drive Al models. They also require far less power than

clectrical ones.

Source: MIT Technology Review (June 2019)

Morgan Lewis




Luminous Computing (Optical Computing) —

Method Claim for Analog-to-Digital Conversion

e  App. No. 16/826,008 (Patent No. 10,837,827, issued 11/17/2020)

Title: System and Method for Photonic Analaog-to-Digital Conversion;

Filed 03/20/2020; No Office Action (Art Unit 2845)
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FIGURE 6A
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Morgan Lewis

A method for analog-to-digital conversion, the method comprising:
receiving an analog input signal and a first optical carrier;
based on the analog input signal, modulating a phase of the first optical carrier to

generate a phase-modulated optical signal;

at a photonie circuit, receiving the phase-modulated optical signal and a second
optical carrier;
at the photonic circuit, generating a spatially-separated plurality of optical outputs

based on the phase-modulated optical signal, comprising, at a coupler of the

photonie eircuit, interfering the phase-modulated optical signal with the second
optical carrier;

at a detector bank comprising a plurality of detectors, receiving the spatially-
separated plurality of optical outputs, wherein each optical output of the spatially-
separated plurality of optical outputs is received by a different detector of the
plurality of detectors; and

at the detector bank, generating a set of binary outputs, comprising, for each
optical coutput of the spatially-separated plurality of optical outputs: generating,

based on the optical output, a respective binary output of the set;

wherein the set of binary outputs is indicative of a value associated with the analog input

signal.



Case Study: Cornami (Fully Homomorphic Encryption)

Source: PatentAdvisor

CORNAMI @® Patented @ Abandoned @ Pending

ALLOWANCE RATE

TOTAL NUMBER OF APPLICATIONS
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ISR S S ~ o A R A R I A I R A%
6 4 57 PATENTED APPLICATIONS g 4 W 4 4 ! 4 W 4 4 W 4 4 4 4 W 4 4
P 2 ABANDONED APPLICATIONS Granted/abandoned shown in year granted /abandoned.
TOTAL®
5 PEMDING APPLICATIONS Pending shown in year filed.

CReRNAMI Fully Homomorphic Encryption (FHE)will Dramatically
Change Cloud Security

Homomorphic Encryption: The
o S 'Golden Age' of Cryptography

The ability to perform complex calculations on encrypted data promises
a new level of privacy and data security for companies in the public and
Untrusted cloud private sectors. So when can they get started?

Source: Cornami

Source: Darkreading.com

Morgan Lewis @



Cornami (Fully Homomorphic Encryption) —

How to Draft Claims to Avoid 3600 Art Unit ?

. App. No. 16/743,257 (Pending)

Title: Method and Apparatus for Configuring a Reduced Instruction Set Computer Processor Architecture to
Execute a Fully Homomorphic Encryption Algorithm

Filed 01/15/2020 (Art Unit 3600!)

102 1. A mathed for configuring a reduced instruction setl computer processor
architecture to process a Discrete Fourier Transform (DFT) of a finite-length sequence
M. wharain the computer processor architecture includes a plurality of primary

processing cores defined by RISC processors, each primary processing core

comprising a main memory, at least one cache memory, and a plurality of arithmetic

legic units, each primary core having an associated node wrapper, the node wrapper
including access memaory associated with each arithmetic logic unit, a load/unlocad

matrix associataed with aach arithmatic logic urnit, the method comprising:

({a) applying a Decimation-in-Frequency algorithm to the DFT to decompose the
DFT of a finite-length sequance N into two derived DFTs aach of a langth N/2;
(b) constructing a logic lemeant aquivalent of each stage of the derived DFTs in

which inputs and outputs are composed of real and imaginary components;
{c) repeating (a) and (b) for each stage of the DFT except for the endpoint stages
of the DFT,;

{d) for each endpoint stage of tha DFT constructing a logic elamant agquivalent of

the corresponding stage of the derived DFTs in which inputs and outputs are composed

of only real components;

{e) configuring at least one primary core of the computer processor architecture

to implement the logic element equivalents of each stage of the DFTs in a manner

which operates in a streaming mode wherein data streams out of corresponding

arithmatic logic units into the mamn memory and other ones of the plurality arithmetic
lagic units; and

FIG 1 {f) configuring the computer processor architecture to couple the output of eaach
-

stage on the DFT to the input of a subsequent stage.

Morgan Lewis



Case Study:

Mythic (In-Memory Computation)

Source: PatentAdvisor

MYTHIC

ALLOWANCE RATE

12

TOTAL®

TOTAL NUMBER OF APPLICATIONS

9 PATENTED APPLICATIONS
0 ABANDONED APPLICATIONS

3 PENDING APPLICATIONS

=

2019

e Result: High-performance, yet
amazingly efficient processing

Morgan Lewis

@ Patented @ Abandoned @ Pending

- I I I
2020 2021

Cranted/abandoned shown in year granted/abandoned.
Pending shown in year filed.
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Source: Mythic-ai.com

Compute-in-Memory IC




Mythic (Analog Compute-in-Memory) —

Method Claim to Map Compute Close to Data

. App. No. 16/222,277 (Patent No. 10,409,889, issued 09/10/2019)
Title: SYSTEMS AND METHODS FOR MAPPING MATRIX CALCULATIONS TO A MATRIX MULTIPLY ACCELERATOR

Filed 12/17/2018 (Art Unit 2182)

= CCurTent

Ammended) A method of configt » arrany of matricx oeultipls

ators of an integrated circwuit with coefficients of orve Or mueore commpeta tioaall

Erterisine caticons, the methood cormprisimngs:

B

Fdentifirtdingg a utilization constraint trpe of the arras of matrix oeealcEp s

accelerators from a plurality of distinet utilization constraint ypes based on comeuting
Attributes Of Thhe Grme O IFeorms SO putaticonally-imtensive applicatioms;
fdentifdng at least one coefficient mapping technigue from a plurality of dissinet

cosfficient Mmapping technigues that addresses the utilization constraing tyre:

configuring the array of matrix multiply acoclerators according to the at least ane

cocfficient mapping technigue, wherein configuring the array includes at leasy serting

within the array the coefficients of the e or mitatiomally—intersive

applicaticns in an arrmangement prescribed by the at least one coeffl D et P T

chnique that optitmizes a computational v aticon of the arran trizs moaltip

accelerators, ared

imcludes partitionine the arcas of mmatcizc ceultiply acoelesa Lors Lo

A coceffcients of a first apelicaticom of Uhe Gre o FEacre Corrkms 1L Thoana ]l

Serial PO 16 Zm o
Atorney Dhocket Moo CTEIC— P oy~ LTS

i A = - & o e nooverlapine resians and cach Bae
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Mythic (Analog Compute-in-Memory) —

Example Claim for Mixed-Signal Integrated Circuit

App. No. 16/127,488 (Patent No. 10,409,889, issued 09/10/2019)
Title: SYSTEMS AND METHODS FOR MIXED-SIGNAL COMPUTING

Filed 9/11/2018 (Art Unit 2122)

1. A mixed-signal integrated circuit comprising:

a reference signal source that generates a plurality of analog reference signals

based on digital input,

wherein an output terminal of the reference signal source is electrically
connected to a shared signal path, and wherein the reference signal source sources the
plurality of analog reference signals to the shared signal path;

a plurality of local signal accumulators arranged along the shared signal path and
each of the plurality of local signal accumulators having an input terminal electrically
connected to the shared signal path, wherein each of the plurality of local signal
accumulators:

collects, via the shared signal path, the plurality of analog reference signals
from the reference signal source; and
stores a sum of the plurality of electrical charges over a predetermined

number of clock cvcles.

Morgan Lewis



Case Study: Qualcomm (Inference)

Over a decade of cutting-edge Al R&D, speeding up commercialization and enabling scale

Consistent Al R&D investment is -
the foundation for product leadership **

J@l—
ol
G

Source: Qualcomm

On-device T:l
intelligence is
paramount

Process data closest to the iy
source, complement the cloud -

()}
- -
o)
XX
AYn
) |
i :

Privacy
Reliability
Low latency

Efficient use of
network bandwidth
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Case Study: Qualcomm (Inference) —

A Very Short But Broad Claim

. App. No. 16/556,094 (Notice of Allowance, dated 1/15/2021)
Title: METHOD, APPARATUS, AND SYSTEM FOR AN ARCHITECTURE FOR MACHINE LEARNING ACCELERATION

Filed 08/29/2019 (Art Unit 2184)

1
| T I_/-lE? //
! [ rit -1 [ |1§.1 -1 8 1. (Currently amended) An inference accelerator comprising:
;'—" : a memory system;
. N -.fm ; . |p—1’,'n-: E a plurality of processing elements, each processing clement:
L - . having a corresponding tightly coupled memory (TCM);
y i b coupled to the memory system; and
X _L N 4 o adapted to access the memory system; and
OO |- | W ! ! ; a global synchronization manager (GSM) module coupled to the plurality of processing
_— P2 6 | i }/'n! elements and to the memory system, the GSM adapted to synchronize operations of the plurality
i of processing elements and memory system using corresponding synchronization modules of
Irla? I . 1 ' each of the plurality of processing elements.
| T s ] | e P_.-mz
=
FIG. 1

Morgan Lewis @



Case Study: Cambricon (FP Conversion)

CAM _BRICO N TECH N OLOG | @ ® ratented @ Abandoned @ Pending
75
50

ALLOWANCE RATE 25 I
O H . A E_ .
2018 2019 2020 2021
Granted/abandoned shown in year granted/abandoned.
Pending shown in year filed.

TOTAL NUMBER OF APPLICATIONS

1 1 6 28 PATENTED APPLICATIONS Source: PatentAdvisor

ToTALO 5 ABANDONED APPLICATIONS

83 PENDING APPLICATIONS

Morgan Lewis @



Case Study: Cambricon (FP Conversion) —

Example of A Successful Math Claim With Circuit

e  App. No. 16/508,139 (Patent No. 10,726,336, issued 07/28/2020)
Title: Apparatus And Method for Compression Coding for Artificial Neural Network

Filed 7/10/2019 (Art Unit 2123)

1. (Currently Amended) A neural network processor, comprising

a floating-point number converter configured to:

i Computing Unit receive one or more first weight values of a first bit length and first input
210

neuron data, and

convert the one or more first weight values to one or more second weight

Weight values of a second bit length,
Cache
Floating-point Number Converter . % . - 5
214 ok wherein the second bit length is less than the first bit length,
i i wherein each of the first weight values includes a first sign bit, a
Configuration Register |
32 - - - . -
first exponent field, and a first mantissa field, and
| ———— | wherein each of the second weight values includes a second sign
First Weight F""
Values Coder Decoder bit, a second exponent field, and a second mantissa field, wherein a bit
PO — ! 308 a1
Bus length of the second mantissa field is less than a bit length of the first
318 i
K '\ddﬁj Register mantissa field; and
a computing unit configured to
Input Device receive the first input neuron data, and
116

calculate first output neuron data based on the first input neuron and the

Fig. 3

second weight values
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Part 3: Other Topics

Agenda

IP Legal Strategy Has to Include Open-Source Software / Hardware

e Trade Secret Protection — Legal Considerations

e Defensive Publications Can Complement Patents

e Al Hardware-Related Patent Litigation (Patent Infringement and All-Elements Rule)
e Al Hardware Startups-Related Lawsuits & Proceedings

e Conclusion
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IP Legal Strategy Has to Include Open Source

POPLAR®
Y 3
-y
iy L*- ‘EP b
fensor ONNX PYTHRCH
STANDARD MACHINE LEARNING FRAMEWORKS
-

POPLAR® : Graph Toolchain for IPU

Graph Libraries Graph Framework Graph Compiler

e e

= 3
IPU-Processor : IPU Servers and
g’f ﬂ

O PyTorch A" TensorFlow User Grapl Jser Kernel
Dataflow Graph Analyzer Template Compiler

Dataflow Graphs Spatial Templates

Dataflow Optimizer, Compiler, & Assembler

Runtime

)isambaNova

Source: GraphCore (Stanford 2018)
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Source: SambaNova Systems




IP Legal Strategy Has to Include Open Source

+* Tensor @xnet Caffe

Morgan Lewis

Source: Intel

Headless NVDLA core

Configuration interface block

» Convolution buffer = Convolution core

L4

- » Activation engine (SDP)
T x

- » Puooling engine (PDP)

Memory
interface block x

- » Local resp. norm (CDP)

- - Reshape (RUBIK)

- - Bridge DMA

Fig. 2 - Internal architecture of NVDLA core.

Source: Nvidia




Trade Secret Protection — Legal Considerations

Case 1:20-cv-10444 Document 1 Filed 03/04/20 Page 1 of 24

UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF MASSACHUSETTS

NEURALMAGIC, INC

Plaineiff.

. ) ot Acon . 2010444 e Are reasonable steps taken to
;J:\‘-\EES‘-‘:SIK INC. AN 43, As just one example of the value of Neural Magic's trade secrets, Intel recently preve nt d |SCIOSU ref)

pd purchased the Israel artificial intelligence company Habana Labs for $2 billion on the promise of

.

- Does invention have

Neuwral Magic Algorithms at issue herein—when implemented in the Neural Magic pOtentIaI/aCtuaI economic Value
compiler—offer comparable performance enhancements on CPUs. Unlike these accelerators, ® IS Inve ntlon genera”y kﬂOWﬂ, or
Plaintiff Neuralh| Neural Magic’s CPU solution will deliver speedups while eliminating the severe memory eaS”y reverse englneered7

undersigned attorneys,

performance speed upgrades for machine learning that provide 2-3x over Nvidia's GPUs. The

constraints associated with these devices and enable neural networks to run anywhere, from o IS |nve n‘“on “read”y
Defendants, Facebook, §
“Defendants”) hereby std  1APtOps to servers, not just in large data centers. asce rtal nab I e”?
. MNeural Magic is a small start-up co-founded by MIT professor Nir Shavit and ® HOW faSt IS teCh nOIOgy
MIT research scientist Alex Matveev in 2017 and based in Somerville, MA. Ome of Neural H
changing?

Magic's technologies—a set of computer algorithms encompassed within a machine compiler
is the result of decades of research on neural networks and artificial intelligence. These
algorithms have the potential to revolutionize the field of artificial intelligence (“AT"), in part by

allowing complicated mathematical functions to run efficiently on commodity-based

Morgan Lewis @



Defensive Publications Can Complement Patents

Design of neural networks based on cost estimation

Defensive Publications Series

& Download

e A publication of a disclosure that
provides defensive benefits, such as
the creation of prior art against others
as of the publication date. Defensive Publications Series

& Download

Weight compression for deep networks using Kronecker products

e Takes many forms
(InfOI’ma| / Self_publlshed / formal) Few-shot learning_using generative modeling

Defensive Publications Series

& Download

Morgan Lewis Source: tdcommons.org @



Al Hardware-Related Patent Litigation — Legal Hurdles

(Example case: ACS v. NVIDIA)

Case 1:19-cv-02032-CFC-CJE Document 1 Filed 10/28/19 Page 1 of 28 PagelD #: 1

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE
ADVANCED CLUSTER SYSTEMS, INC.,
Plaintift, Civil Action No.
V. DEMAND FOR JURY TRIAL
NVIDIA CORPORATION,

Defendant.

FRONT END -

VIEW !
| % -

GLUE CODE L FCONTROLLER" N p _\_‘_—_
| -\-‘H-_H-‘

BACK END MODEL"™

Figure 3. SET is a Perfect Companion to GPGFPUs

Patents-in-Suit

. United States Patent No. 8,082,289 titled “Cluster
Computing Support for Application Programs”

. United States Patent No. 8,140,612 titled “Cluster
Computing Support for Application Programs”

. United States Patent No. 8,676,877 titled “Cluster
Computing Using Special Purpose Microprocessors”

Morgan Lewis

38, ACS 15 mlormed and behieves, and thereon alleges that NVLink is an mterconnect
architecture that facilitates data and control transmission between multiple GPUs and Central

Processing Units (“CPUs™), combined together in a hybrid cube mesh as shown below

] &

In general terms, the NVLink architecture implements the same GPU-to-GPU communication

architecture claimed in the Patents-in-Suit. The details are set forth in the exemplary claim charts

provided at Exhibits E-H hereto




Example Claim Chart from Lawsuit

(Patent Infringement — All Elements Rule)

Patent-in-Suit: Patent No. 8,082,289 titled “Cluster Computing Support for Application Programs” (Exhibit E, claim chart)

Alleged NVIDIA’s Infringing Products

Claim 29 Language

A method of evaluating a command on a
computer cluster comprising:

communicating a command from at least one
of a user interface or a script to one or more
cluster node modules within the computer
cluster;

for each of the one or more cluster node
modules, communicating a message based on
the command to a respective kernel module
associated with the cluster node

module;

for each of the one or more cluster node
modules, receiving a result from the respective
kernel Module

for at least one of the one or more
cluster node modules, responding to
messages from other cluster node modules.

Morgan Lewis

(e.g., DGX Station, DGX-1, DGX-2, HGX-1, HGX-2, Tesla V100, and Tesla P100)

Each Accused Server Product practices a method of evaluating a command on a computer
cluster as follows.

For example, each Accused Server Product includes a CPU or host executing a program (user
interface or script) that communicates commands to a cluster of GPU Accelerators, each of
which include a cluster node module.

For example, each GPU Accelerator cluster node module communicates a message based on
the command received from the CPU or host to a CUDA kernel associated with the cluster node
module.

For example, each GPU Accelerator cluster node module receives results from the CUDA kernel
associated with the cluster node module.

For example, at least one GPU Accelerator cluster node module responds to messages from
other GPU Accelerator cluster node module using the NVLink peer-to-peer communication
function.



Al Hardware Startups-Related Lawsuits & Proceedings

Haile Technologies ) )
4:1?—cv—0509?—F“qH Haﬂo Technplogles LLC w. NQ NDA, INC. Gyrfalcon Technology
Patent infringement (dismissed voluntarily) i
2:19-ev-00751-TSZ Hailo Technologies LLC v. Anker Innovations Limited 3:18-cv-06361-JD Synopsys, Inc. v. Gyrfalcon Technology Inc.
Patent infringement (dismissed voluntarily) CDPy”Q_ht infringement (dismissed - settled)
2:19-cv-00958-RAJ-BAT Hailo Technologies LLC v. Moovn Technologies LLC Allegation: GTI enabled access to Synopsys’ EDA software
Patent infringement (dismissed voluntarily) by entering a key code/password provided by
S many Synopsys, but that it did not have authorization from Synopsys.
Recently, Hailo Technologies LLC - after three continuous attempts at suing the
manufacturer of Anker Roav SmartCharge Car Kit - sued Best Buy, Target, and Walmart for
infringement through the sale of Anker’s devices. While this clearly looks like a move made INSPUR ELECTRONIC INFORMATION INDUSTRY CO. LTD.,
after extreme frustration, things might not go well for these online retailers. 2:20'0""00019"]3(3 _|-°ngh°m HD L|;C- V. Inspur Group Co. Ltd.
P|atent infringement (ongoing)

Source: https://www.greyb.com/ecommerce-infringement-through-sales/

Wave Computing (Ch. 11)
HiSilicon Technaologies (Huawei) Ch. 11 bankruptcy proceedings

Court of Appeals Docket #: 18-1979
Huawei Technologies Co., Ltd. v. Samsung Electronics Co., Ltd.

Patent infringement Bitmain Technologies , , .
3:16-cv-02787-WHO Huawei Technologies, Co, Ltd et al v. Samsung Electronics Co, Ltd. 1'13"’"‘25;n?§;f§fﬁifr;’;;iijﬁi’k'°;'};f°“" . Bitmain, Inc. et al
Patent infringement (dismissed-settled) 2:18-cv-01626-TSZ Bitmain Technologies Ltd. v. Doe
3:17-cv-06451-EMC Cohen v. TSMC North America Corp. et al 18:1030 Computer Fraud and Abuse Act (dismissed vol.)
Patent infringement (dismissed-settled)
1:17-cv-00189-RC Cohen v. TSMC North America et al (General Vision

2:13-cv-00915-MCE-CKD Cognimem Technologies, Inc. et al v. Paillet et al

) Patent mf“ngement (FranSfer) . i Trademark infringement (Lanham Act) - Dismissed - Voluntarily
4:19-cv-00731-SDJ Vantage Micro LLC v. Huawei Device USA, Inc. et al 2:13-cv-00915-MCE-CKD Cognimem Technologies, Inc. et al v. Paillet et al

Patent infringement (dismissed) Trademark infringement (Lanham Act) - Dismissed - Voluntarily
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Conclusion

Startups should ask:

e What's is your niche?

e What is the SW/HW ecosystem, including open source?
e What is the right IP strategy?

e What is the right patent claim / continuation strategy?

Morgan Lewis @



Coronavirus
COVID-19 Resources

We have formed a multidisciplinary
Coronavirus/COVID-19 Task Force to
help guide clients through the broad scope
of legal issues brought on by this public
health challenge.

Morgan Lewis

To help keep you on top of
developments as they
unfold, we also have
launched a resource page
on our website at

If you would like to receive
a daily digest of all new
updates to the page, please
visit the resource page to
using the purple
“Stay Up to Date” button.


http://www.morganlewis.com/topics/coronavirus-covid-19
http://reaction.morganlewis.com/reaction/RSGenPage.asp?RSID=UMVxvmyB1F6h1vNcds-8Y4-37-SvgFmpjFqBNL0SHK8
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Drawing on 18 years of R&D experience in the technology
industry and a background in computer science and engineering,
Kannan Narayanan works with clients to build strong patent
portfolios, preparing and prosecuting US and foreign patents,
performing patent due diligence, and providing non-infringement
and invalidity opinions and freedom to operate in a variety of
technology areas, including artificial intelligence (Al), natural
language processing, data visualization, computer architecture,
robotic process automation, genetic programming, cloud
computing, social networking, wireless power transmission, fraud
detection, semiconductor device manufacturing, computer
networking, additive manufacturing, image processing, medical
and healthcare related technologies, and consumer products.
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Serving as the leader of Morgan Lewis’s semiconductor practice
and as a member of the firm’s fintech and technology practices,
Andrew J. Gray IV concentrates his practice on intellectual
property (IP) litigation and prosecution and on strategic IP
counseling. Andrew advises both established companies and
startups on Blockchain, cryptocurrency, computer, and Internet
law issues, financing and transactional matters that involve
technology firms, and the sale and licensing of technology. He
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andrew.gray@morganiews.com US International Trade Commission.

Morgan Lewis



Our Global Reach

Africa Latin America
Asia Pacific Middle East
Europe North America

Our Locations

Abu Dhabi Moscow
Almaty New York
Beijing* Nur-Sultan
Boston Orange County
Brussels Paris

Century City Philadelphia
Chicago Pittsburgh
Dallas Princeton
Dubai San Francisco
Frankfurt Shanghai*
Hartford Silicon Valley
Hong Kong* Singapore*
Houston Tokyo

London Washington, DC
Los Angeles Wilmington
Miami

Our Beijing and Shanghai offices operate as representative offices of Morgan, Lewis & Bockius LLP. In Hong Kong, Morgan, Lewis & Bockius is a separate

°

[ ]

I v IOI g q n LeWI S Hong Kong general partnership registered with The Law Society of Hong Kong. Morgan Lewis Stamford LLC is a Singapore law corporation affiliated with
Morgan, Lewis & Bockius LLP.
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