Predictive Coding: The Future of eDiscovery

Morgan Lewis technology may-rathon

presenters

Stephanie A. "Tess" Blair Scott A. Milner

May 15th, 2012

Introduction

Please note that any advice contained in this presentation is not intended or written to be used, and should not be used, as legal advice.

Overview

- The eDiscovery Problem
- Evolution of a Solution
- Predictive Coding
- Defensibility
- Getting Started
- Early Results

The eDiscovery Problem

The eDiscovery Problem

Volume

- The Digital Universe doubles every 18 months
- Corporate data volumes increasing
- 98% of all information generated today is stored electronically
- 2010: 988 Exabytes

(1 Exabyte = 1 trillion books)

The eDiscovery Problem

- Expense
 - eDiscovery market expected to hit
 \$1.5 billion by 2013
 - eDiscovery can consume 75% or more of litigation budget
 - Primary cost driver is volume of information subject to discovery

Evolution of a Solution

Early focus on driving down cost of labor

- Traditional Associates \$\$\$
- Contract Attorneys \$\$
- LPO \$
- Current focus on driving down volume of data subject to discovery

- Key words
- Analytics
- Predictive Coding

Morgan Lewis

Evolution of a Solution

Linear Review

Traditional Model

Custodian driven

Expensive

- False positives
- Lack of context
- Manual slow
- Keyword driven
- No prioritization
- Multipass required

Unnecessary Risk

- Many false negatives
- Many false positives
- No consistency
- Contract attorneys

Limited NonLinear Review

2nd-Generation Model

Keyword/topic driven

Less Expensive

- Docs/hr improved
- Limited context
- Mostly manual faster
- Keyword focused
- No prioritization
- Multipass still required

Unnecessary Risk

- Many false negatives
- Many false positives
- Limited consistency
- No learning

Relevance/Priority-Centric Review

3rd-Generation Model

Substance driven;
 computer expedited

Least Expensive

- Predictive Analytics™
- Domain & relevance
- Technology assisted fastest
- Meaning based
- Docs prioritized
- Multipass optional

Limits Risk

- Identifies false negatives
- Identifies false positives
- Maximum consistency
- Expert driven

- What it is NOT:
 - Artificial intelligence
 - The end of attorneys reviewing documents
 - Perfect, but it is far superior to human-only, linear review

- It is also NOT:
 - Keyword or search-term filtering
 - Near duplicates, email threading
 - "Clustering"
 - Concept groups
 - Relevancy ratings

- So, what is it?
 - Computer-Assisted Review
 - Iterative, Smart, Prioritized Review
 - Faster
 - More Accurate
 - Less Expensive

- Other Benefits
 - ECA
 - Quality Control
 - Privilege Analysis
 - Inbound Productions

Predictive Coding Workflow

Step 1

Predictive Analytics™ to Create Review Sets

Human Review

Step 2

System Training on Relevant Documents

Computer Suggested

Step 3

Human Review of Computer Suggested

Adaptive ID Cycles (Train, Suggest, Review)

Step 4

Statistical Quality-Control Validation

Iteration Tracking: When Are We Done?

Training Iteration Analysis

Hypothetical: Human Review vs. Predictive Coding

Defensibility

- Predictive coding not at issue Humans review and determine relevancy of computer-suggested documents assisted by Predictive Coding – No "black box"
- For documents not reviewed Issue is sampling
- Statistical sampling widely accepted scientific method supported by expert testimony

Disclosure

- Split emerging within profession on disclosure
- Whether and when to disclose use of Predictive Coding
- What to disclose

- Defensibility (cont.)
 - Case law growing on the use of sampling techniques
 - Zubulake v. UBS Warburg, LLC, 217 F.R.D. 309 (S.D.N.Y. 2003)
 - Court accepted the use of sampling due to the prospect of having to restore thousands of archived data tapes.
 - Mt. Hawley Ins. Co. v. Felman Prod. Inc. 2010 WL 1990555 (S.D. W.Va. May 18, 2010)
 - "Sampling is a critical quality control process that should be conducted throughout the review."
 - In re Seroquel Prods. Liab. Litig., 244 F.R.D. 650 (M.D. Fla. 2007)
 - Court instructed "common sense dictates that sampling and other quality assurance techniques must be employed to meet requirements of completeness."

- Defensibility (cont.)
 - Endorsement by legal community (Legal Tech 2012, NYC)
 - Judge Andrew Peck and judicial endorsement
 - October 2011 LTN Article
 - Order in <u>Da Silva Moore v. Publicas Groupe et al.</u> (S.D.N.Y 2011)

Getting Started

Key Ingredients

- Predictive Coding requires:
 - People
 - Process
 - Technology

People

- People:
 - Experienced litigators to create and QC seed set
 - Experienced discovery attorneys to drive the predictive coding workflow, gather metrics, and measure results
 - Technicians to run the technology and manage the data

Process

- Process
 - Documented workflow
 - Process capable of being repeated
 - Quality control by attorneys
 - Process for gathering appropriate metrics
 - Level of confidence supported by statistics

Technology

- Technology
 - Few software vendors offer true "predictive coding" capability
 - Many are claiming they have this technology, but are just repackaging existing technologies with new buzzwords
 - Buyer beware

Early Results

How Morgan Lewis Uses Predictive Coding

- Increase Quality
 - Error rate reduction
 - Confidence intervals
- Enhance Service Delivery
 - Cost certainty
 - Time certainty
- Demonstrate Real Value
 - Early Case Assessment
 - Discovery cost equal to value received
- Competitive Advantage
 - Dedicated technical and legal team with expertise in predictive coding
 - Pricing competitive with all other market segments, including offshore

Case Studies Reduction in Volume

Review and Production of ESI

Case Study 1

- Coded by computer = 57% (317,000 docs)
- Confidence interval = 95%
- Defect rate = .79% or less

Case Studies

Reduction in Volume (cont.)

Review and Production of ESI

Case Study 2

- Coded by computer = 75% (192,000 docs)
- Confidence Interval = 95%
- Defect rate = 5% or less

Case Studies

Reduction in Volume (cont.)

Review and Production of ESI

Case Study 3

- Coded by computer = 85% (206,000 docs)
- Confidence Interval= 95%
- Defect rate = 5% or less

Contacts

Tess Blair

Partner, Morgan, Lewis & Bockius LLP
eData Practice Group
215.963.5161
sblair@morganlewis.com

Scott Milner

Partner, Morgan, Lewis & Bockius LLP
eData Practice Group
215.963.5016
smilner@morganlewis.com

Participants

Stephanie A. Blair Partner Morgan Lewis P: 215.963.5161

E: sblair@morganlewis.com

Scott A. Milner
Partner
Morgan Lewis

P: 215.963.5016

E: smilner@morganlewis.com

Beijing Boston Brussels Chicago Dallas Frankfurt Harrisburg Houston Irvine London Los Angeles Miami New York Palo Alto Paris Philadelphia Pittsburgh Princeton San Francisco Tokyo Washington Wilmington